Öffentliche Prüfstelle für Baustoffe und Geotechnik Hochschule Konstanz - HTWG

Öffentliche Prüfstelle Hochschule Konstanz Postfach 10 05 43 78405 Konstanz

Hausanschrift: Brauneggerstraße 55 D-78462 Konstanz

Tel. 07531 /206 - 175 Büro

- 176 Labor Geotechnik

- 177 Labor Beton

Fax 07531 / 206 -430

e-mail: mpa-oep@htwg-konstanz.de

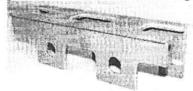
Ihr Zeichen

Ihre Nachricht vom 19.10.2009

Unser Zeichen

Ba/Kr

Datum


01.02.2010

Prüfbericht

Auftrag-Nr.: 29/245-1

Prüfgegenstand:

Abstandhalter Linienförmig, nicht befestigt (Abstandhalter nach DBV-Merkblatt, Typ C1) Einbaulage: Offene Seite zur Schalung / Untergrund

Probeneingang am:

21.10.2009, per Versand,

in der Öffentlichen Prüfstelle, Hochschule Konstanz

Prüfungen:

nach dem DBV-Merkblatt Abstandhalter (Fassung Juli 2002)

Prüfungen von nicht einbetonierten Abstandhaltern (A2)

- Verlegemaß cv

- Tragfähigkeit im statischen Kurzzeitversuch

- Kippstabilität

Dauerstandversuch

Prüfung von einbetonierten Abstandhaltern (A3)

- Herstellung der Prüfkörper
- Frost-Tauwechsel Prüfung
- Ermittlung der Wassereindringtiefe im Bereich des Abstandhalters
- Prüfung mit Temperaturwechselbeanspruchung

Öffentliche Prüfstelle für Baustoffe und Geotechnik Auftr.-Nr. 29/245-1 Hochschule Konstanz - HTWG Seite 2

1 Allgemeines

Mit Auftrag und Anlieferung am 21.10.2009 wurden der Prüfstelle linienförmige Abstandhalter aus Kunststoff übersendet. Die Abstandhalter sollen nach dem DBV – Merkblatt – Abstandhalter (Fassung Juli 2002) geprüft werden.

Die Herstellung der Prüfkörper für die oben genannten Prüfungen erfolgte durch die Öffentliche Prüfstelle.

2 Prüfung

2.1 Herstellung der Prüfkörper

Die Herstellung der Prüfkörper erfolgte nach Ziffer A3.1.

Vorgaben für die Betonzusammensetzung

	C 25 / 30	C 35 / 45
CEM I 32,5 R	280 kg/dm ³	-
CEM I 42,5 R	-	380 kg/dm ³
Steinkohlenflugasche	60 kg/m^3	_
Wasser	179 kg/dm ³	171 kg/dm ³
w/(z+0,4f)	0,60	-
w/z	-	0,45

Prüfergebnisse

	C 25 / 30	C 35 / 45
$a_{10} = DIN 1048 T 1$	470 mm	440 mm
	39,4 N/mm ²	54,9 N/mm²
ß _{w200} = DIN 1048 T5	40,4 N/mm²	55,8 N/mm²
	38,6 N/mm²	55,3 N/mm²
Mittelwert:	39,5 N/mm²	55,3 N/mm²

Öffentliche Prüfstelle für Baustoffe und Geotechnik Auftr.-Nr. 29/245-1 Hochschule Konstanz - HTWG Seite 3

2.2 Verlegemaß c_v

Die Prüfung erfolgte nach Ziffer A2.1.

Ablesung [mm]	39.7	39.5	39.3	39.2	39.5	393	39.5	393	39.2	39.5
Trotesung [mm]	27,1	37,5	37,3	37,2	37,5	37,3	37,5	37,5	37,2	37,5

Mittelwert der Ablesung: $c_v = 39,4 \text{ mm}$

Maximales Abmaß:

39,2 / 39,7 mm

2.3 Tragfähigkeit im statischen Kurzzeitversuch

Die Prüfung erfolgte nach Ziffer A2.2.

Belastungsgeschwindigkeit: 0,5 mm/min

Lasteintragung:

Mittig zwischen zwei Stützfüßen – Bild A.1 – linkes Bild.

Stahlrundstab Ø 16 mm

Verformung [mm]	0,68	0,72	1,0	0,75	0,81
Zul. Last [KN]	1,000	1,000	1,000	1,000	1,000

Stahlrundstab Ø 28 mm

Verformung [mm]	0,68	0,66	0,61	0,72	0,70
Zul. Last [KN]	1,000	1,000	1,000	1,000	1,000

Jeder Einzelwert entspricht der Leistungsklasse L2 nach DBV Merkblatt Abstandhalter (Juli 2002), 2.1.3 Tabelle 2.

2.4 Kippstabilität

Die Prüfung erfolgte nach Ziffer A2.3.

Belastungsgeschwindigkeit: 0,5 mm/min

Lasteintragung:

Entsprechend Bild A.1 – rechtes Bild.

Stahlrundstab Ø 16 mm

Verformung [mm]	0,77	0,72	0,86	0,83	0,91
Zul. Last [KN]	0,50	0,50	0,50	0,50	0,50

Stahlrundstab Ø 28 mm

Verformung [mm]	0,70	0,84	0,71	0,76	0,85
Zul. Last [KN]	0,50	0,50	0,50	0,50	0,50

Jeder Einzelwert entspricht der Leistungsklasse L2 nach DBV Merkblatt Abstandhalter (Juli 2002), 2.1.3 Tabelle 2.

Öffentliche Prüfstelle für Baustoffe und Geotechnik Auftr.-Nr. 29/245-1 Hochschule Konstanz - HTWG Seite 4

2.5 Tragfähigkeit im Dauerstandversuch

Die Prüfung der erfolgte nach Ziffer A2.4.

Last auf Abstandhalter:

175 N

Lasteintragung:

Mittig zwischen zwei Stützfüßen

Temperatur:

40 °C

Stahlrundstab Ø 16 mm

Н	2	4	6	12	24	6 h nach Entlastung
[mm]	-0,11	-0,11	-0,12	-0,13	-0,15	-0,11

Stahlrundstab Ø 28 mm

Н	2	4	6	12	24	6 h nach Entlastung
[mm]	-0,07	-0,08	-0,08	-0,08	-0,11	-0,08

Die ungünstigste Stelle der Lasteintragung wurde im Vorversuch bestimmt. Anforderungen nach DBV Merkblatt Abstandhalter (Juli 2002), 2.1.2 Tabelle 1, erfüllt.

2.6 Frost-Tauwechsel – Prüfungen

Die nach A3.1 einbetonierten Abstandhalter wurden ab einem Alter von 35 Tagen 56 Frost-Tauwechseln nach dem CF-Verfahren ausgesetzt. Die Probenvorbereitung und Prüfung erfolgte nach A3.2.

	C 25 / 30	C 35 / 45
	In Ordnung -	In Ordnung -
Abstandhalter C1	keine Risse in der	keine Risse in der
$c_v = 40 \text{ mm}$	unmittelbaren Umgebung der	unmittelbaren Umgebung der
	einbetonierten Abstandhalter	einbetonierten Abstandhalter

2.7 Wassereindringtiefe im Bereich des Abstandhalters

	Probe	C 25 / 30	C 35 / 45	
Marinala	1	35 mm	20 mm	
Maximale Wassereindringtiefe	2	18 mm	18 mm	
DIN 1048, T5	3	19 mm	24 mm	
	Mittelwert:	24 mm	21 mm	

Anforderungen nach DBV Merkblatt Abstandhalter (Juli 2007), 2.2.4, erfüllt.

(2.2.4 Hoher Wassereindringwiderstand und Widerstand gegen chemischen Angriff, Wassereindringtiefe im Bereich des einbetonierten Abstandhalters ≤ 50 mm)

Öffentliche Prüfstelle für Baustoffe und Geotechnik Auftr.-Nr. 29/245-1 Hochschule Konstanz - HTWG Seite 5

2.7 Prüfung der Temperaturwechselbeanspruchung

Die Prüfkörperoberfläche mit dem einbetonierten Abstandhalter wurde im Alter von 35 Tagen einer zehnmaligen Temperaturwechselbeanspruchung zwischen den Temperaturen von -10 $^{\circ}$ C und +60 $^{\circ}$ C ausgesetzt.

Beurteilung: Es wurden im Bereich der einbetonierten Abstandhalter keine Risse oder Abplatzungen festgestellt.

Für die Prüfung

Dipl.-Ing. (FH) S. Krolitzki

Für die Prüfstelle

Dipl.-Ing. (FH) P. Baur